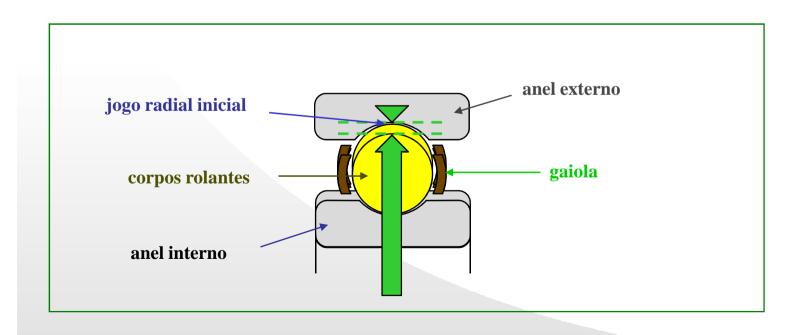


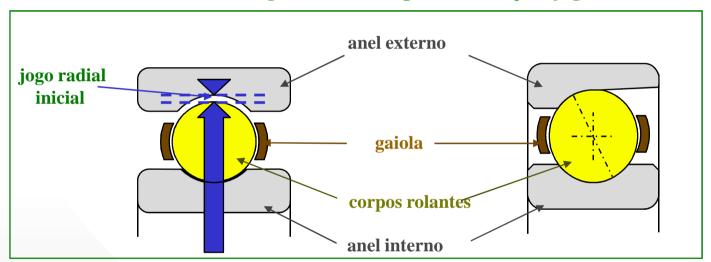
- > Apresentação da SNR
- > Escolha dos rolamentos em função da aplicação
 - ✓ Fatores de escolha dos rolamentos: aptidões, famílias
 - ✓ Gaiolas
 - ✓ Estanqueidades
 - ✓ Simbolização
- Duração de vida
 - ✓ Capacidade de carga dinâmica e estática
 - ✓ Duração de vida nominal
 - ✓ Duração de vida corrigida
 - ✓ Confiabilidade
- > Condições de montagem dos rolamentos
 - ✓ Jogo radial
 - ✓ Ajuste
 - ✓ Escolha do lubrificante adequado
 - ✓ Avarias mais freqüentes
- > Utilização do CD-Rom SNR Duração de vida
- > Exemplos



Montagem: Jogo radial interno

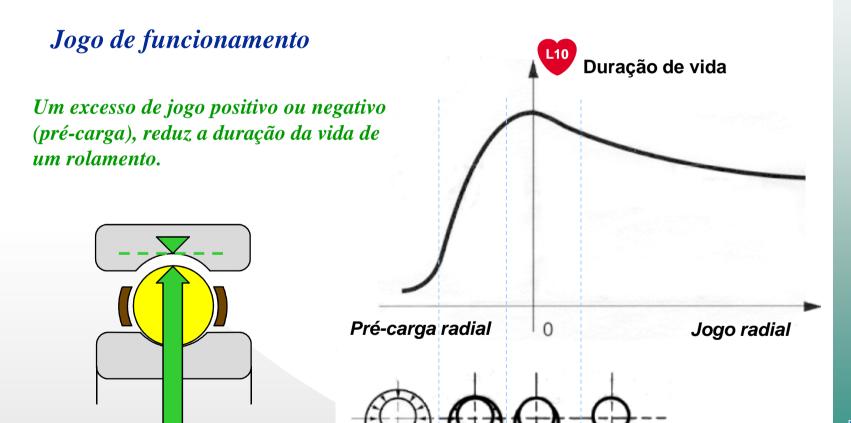
Definição

É o valor do **deslocamento radial** máximo de um anel em relação **ao outro**, deslocamento medido sem carga (*a unidade de medida é o micron*)

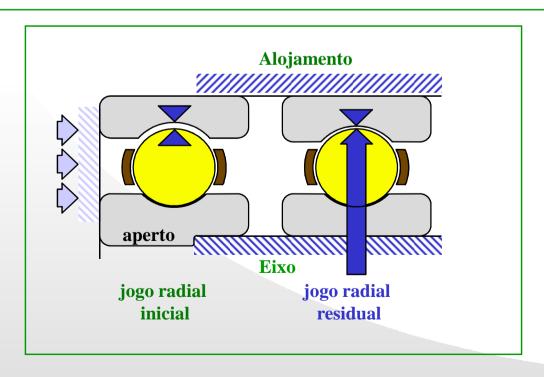


Montagem: Jogo, rolamento de contato angular

1) Os rolamentos de contato angular não têm, pela fabricação, jogo radial inicial


2) Não confunda o jogo radial e o jogo axial

Montagem: Influência do jogo na duração de vida



Montagem Jogo radial residual

Definição

Devido aos apertos no eixo e no alojamento, a **montagem** do rolamento modifica o jogo radial inicial, e gera um jogo menor, é a noção de

JOGO RADIAL RESIDUAL.

Montagem: Jogo radial residual após a montagem

A fórmula a utilizar é a seguinte:

$$\mathbf{J}_{rm} = \mathbf{J}_0 - \Delta \mathbf{J} (\mathbf{Aj.})$$

$$\mathbf{J}_{rm} = \mathbf{J}_0 - \mathbf{t}_i \mathbf{x} \mathbf{S}_i - \mathbf{t}_e \mathbf{x} \mathbf{S}_e$$

 J_0 = jogo radial interno inicial

 $\Delta J (Aj.)$ = redução de jogo aliado aos ajuste da montagem

t_i = taxa de repercussão do eixo no anel interno

 S_i = aperto do anel interno

t_e = taxa de repercussão do alojamento no anel externo

 S_e = aperto do anel externo

 $\mathbf{t_i}$ = % de interferência entre a característica do eixo e a característica do diâmetro interno do rolamento que agit no jogo interno inicial do rolamento.

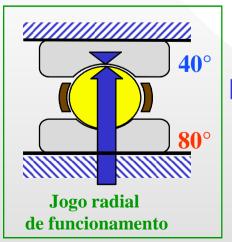
 $\mathbf{t_e}$ = % de interferência entre a característica do alojamento e aquela do diâmetro externo do rolamento que agit no jogo interno inicial do rolamento.

Montagem: Jogo radial de funcionamento

Quando uma montagem é realizada, o jogo interno do rolamento (**jogo radial residual**) pode ser **reduzido** novamente pelas dilatações diferenciais provocadas pela temperatura.

Redução aliada à temperatura $\Delta J (Temp.) = C . (D . \Delta Te - d . \Delta Ti)$

C: coef. de dilatação do aço $100Cr6 = 1,2 \times 10^{-6} \text{ mm / mm / }^{\circ}C$


D: diâmetro externo do rolamento

d: diâmetro interno do rolamento

 ΔTe : diferença de temperatura entre o diâmetro externo e a temperatura ambiente.

 ΔTi : diferença de temperatura entre o diâmetro interno e a temperatura ambiente.

O jogo resultante é o **jogo radial de funcionamento**, que deve ser positivo para assegurar **a rotação livre** deste sistema mecânico em movimento.

Devemos **prever** um jogo radial **residual suficiente** para compensar as diferenças de dilatação entre o eixo e o alojamento e chegar deste maneira a ter **um jogo de funcionamento que não seja nulo!**

Montagem : Jogo radial de funcionamento

Caso geral:

Em regra geral, o rolamento deve funcionar com um jogo radial positivo

Devemos utilizar um rolamento com um jogo radial interno inicial suficiente para que após a montagem e em funcionamento o jogo seja sempre positivo e não nulo.

Jrf = Jo - redução do jogo por ajuste - redução do jogo por temperatura $<math>Jrf = Jo - \Delta J (Aj.) - \Delta J (Temp.)$

Jrf: jogo radial de funcionamento Jo: jogo inicial

Montagem: Jogo radial de funcionamento

Escolha da categoria de jogo radial inicial

Devemos escolher a categoria de jogo inicial de maneira que uma vez o rolamento montado, o jogo radial residual, Jrf seja, pelo menos no valor seguinte:

Rolamentos de esferas

 $Jrf = (d)^{1/2}.10^{-3}$

Rolamentos de rolos cilíndricos

 $Jrf = 4. (d)^{1/2}.10^{-3}$

Rolamentos autocompensadores de esferas Jrf = 2. $(d)^{1/2}.10^{-3}$

Rolamentos autocompensadores de rolos $Irf = 5. (d)^{1/2}.10^{-3}$

Montagem: jogo radial interno

O jogo radial interno de um rolamento padrão é definido pela Norma ISO, segundo o tipo de rolamento e suas dimensões (diâmetro interno)

Exemplo: Jogo radial de um rolamento 6206: Para este rolamento cujo diâmetro interno é de; d = 30 mm

Jogo categoria N 05 à 20 μ m

// 3 13 à 28 μ m

// 4 23 à 41 μ m

// 5 30 à 53 μ m

// 01 à 11 μ m

Montagem: Simbolização dos ajustes

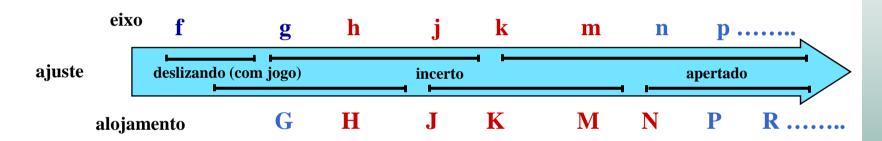
Os ajustes são representados por uma letra e um número. letra maiúscula para os ajustes nos alojamentos letra minúscula para os ajustes nos eixos.

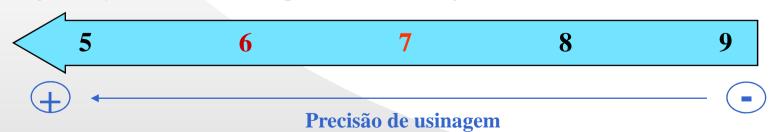
AJUSTE no
ALOJAMENTO

K7 j6

Ajuste no eixo

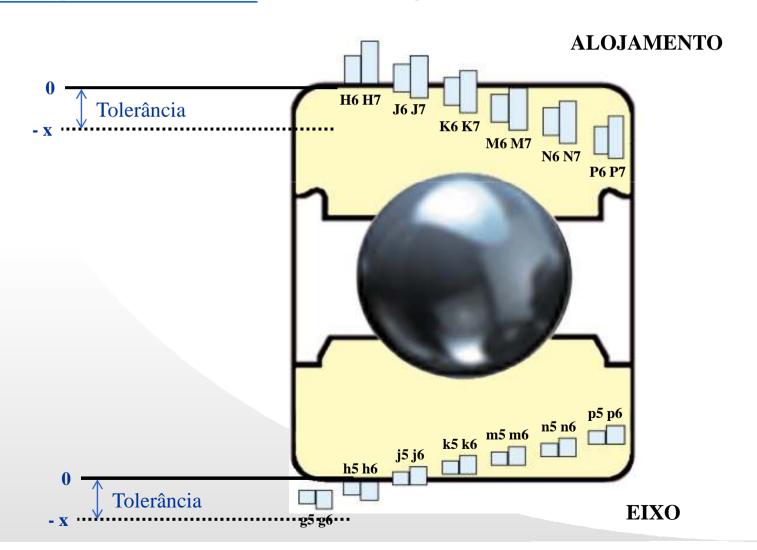
A letra indica o nível do ajuste, que pode ir de livre a muito apertado


O número indica a precisão da usinagem e a posição das tolerâncias em relação à característica nominal


Montagem: Simbolização dos ajustes

Significação da letra ... ajustes

Em vermelho os mais utilizados


Significação do número... a precisão de usinagem

Montagem: Posicionamento dos ajustes

Montagem: Exemplo redução do jogo (1)

Jogo radial residual após montagem

$$J r m = J0 - (Si.ti) - (Se.te)$$

Exemplo: rolamento 6206 com ajustes k5 (eixo) e N6 (alojamento)

- (1) Tolerância do eixo
- (2) Tolerância do alojamento
- (3) e (4) jogo (+) ou aperto (-) prováveis
- (5) e (6) Médio **Si** e **Se**

Elemento do rolamento	Suporte	Taxa de repercussão	
Anel interno	Eixo pleno	ti ≅ 0,8	
And interno	Eixo em cruz	ti ≅ 0,6	
Anel externo	Alojamento em aço/chapa	te ≅ 0,7	
	Alojamento em liga leve	te ≅ 0,5	

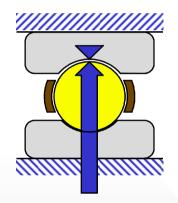
_		k5	
(1)	+2		+11
	-2	-11.5	-21
(3)	-5	1110	-18
		(5)	

Redução devida aos ajustes

Si. ti = 11,5 x
$$0,8 = 9,2 \mu m$$

Se . te = 17 x
$$0.7 = 11.9 \mu m$$

$$\Delta J (Aj.) = 21 \mu m$$



Montagem: Exemplo redução do jogo (2)

Redução devida à temperatura

 $\Delta J (Temp.) = C \cdot (D \cdot \Delta Te - d \cdot \Delta Ti)$

Exemplo: rolamento 6206 (D = 62 mm.; d = 30 mm.) com temperaturas em funcionamento de 70°C (extérieur) e 80°C (interno)

80° C ΔJ (Temp.) =1,2 x 10⁻⁶ x (62 . 50 – 30 . 60) = 0,002 mm

Redução total do jogo radial interno inicial

$$\Delta J = \Delta J (Aj.) + \Delta J (Temp.) = 21 \mu m + 2 \mu m = 23 \mu m$$

Jogo radial de funcionamento recomendado para este rolamento (6206)

$$Jrf = (30)^{1/2} \times 10^{-3} \approx = 5 \mu m$$

Montagem: Exemplo redução do jogo (3) Escolha da categoria de jogo radial inicial

O jogo interno inicial que permitirá alcançar um jogo de funcionamento na ordem de 5 µm para um rolamento 6206 é un jogo de **categoria 4.**

Jo (médio) 6206 grupo
$$4 = 32$$
 μm
$$Jrf = 32 - 23 = 9$$
 μm

Rolamentos de esferas de contato radial

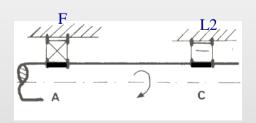
Diamètre d'alésage	Groupe 2		Groupe N		Groupe 3		Groupe 4		Groupe 5	
d mm	min	max								
18 <d≤24< th=""><th>0</th><th>10</th><th>5</th><th>20</th><th>13</th><th>28</th><th>20</th><th>36</th><th>28</th><th>48</th></d≤24<>	0	10	5	20	13	28	20	36	28	48
24 <d≤30< th=""><th>1</th><th>11</th><th>5</th><th>20</th><th>13</th><th>28</th><th>23</th><th>41</th><th>30</th><th>53</th></d≤30<>	1	11	5	20	13	28	23	41	30	53
30 <d≤40< th=""><th>1</th><th>11</th><th>6</th><th>20</th><th>15</th><th>33</th><th>28</th><th>46</th><th>40</th><th>64</th></d≤40<>	1	11	6	20	15	33	28	46	40	64
	7	7	7	7	4	7	4	7	4	7
Jo (médio)	5,	5	1:	2,5	20	0,5	(32	4	1,5

Estes ajustes são variáveis segundo os parâmetros de concepção e de funcionamento

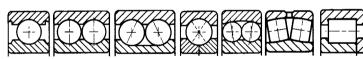
Montagem: Ajustes recomendados

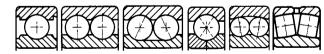
Carga em rotação em relação ao anel interno	Cargas normais P < C/5	j6 / k6	Caso geral	H7 / J7
Anel	Cargas elevadas	m6 / n6	Anel livre	G7 / H7
interno apertado no eixo	P > C/5	m6 / p6	Rol. cônicos ou cilíndricos	M7 / P7
Carga em rotação em relação ao anel externo	Caso geral	g6 / h6	Cargas normais P< C/5	M7 / N7
Anel externo apertado no alojamento	Anel livre em seu suporte	f6 / g6	Cargas muito fortes	N7 / P7

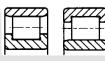
Montagem: Recomendações para os ajustes



Montaremos apertando o anel que gira em relação à carga

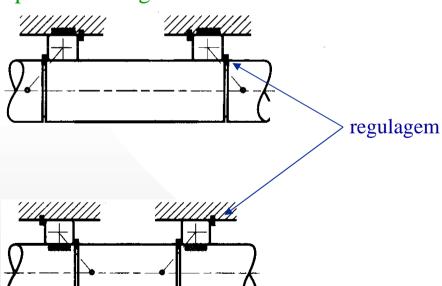

Em regra geral, na montagem deve haver um dos rolamentos imobilizados axialmente nos dois sentidos, e o outro rolamento livre axialmente.



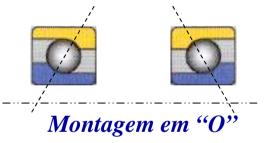

Apoio fixo (F)

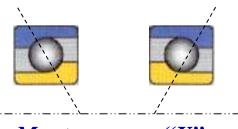
Apoio livre L1

Apoio livre L2

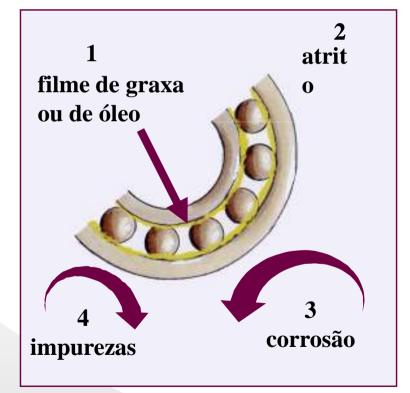


Montagem: Recomendações nos ajustes


Montagem com dois apoios fixos


Segundo a aplicação, a pré-carga para a montagem é definida

Montagem em "X"



Lubrificação:

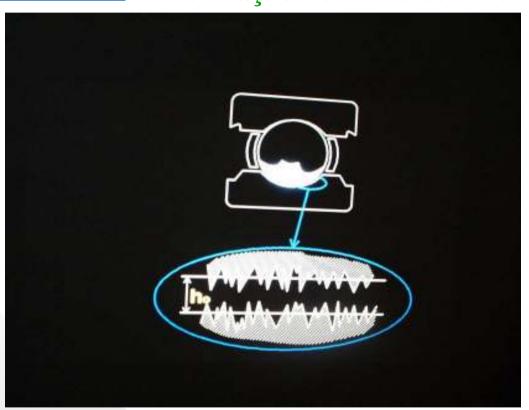
Função do lubrificante...?

Reduzir o **atrito e** eliminar o desgaste

formar um **filme** entre os corpso rolantes e as pistas de rolamento para evitar o contato **metálico** (metal contra metal)

proteger contra a **corrosão**

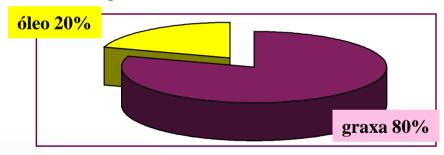
Ajuda (unicamente a graxa) a evitar a entrada das diferentes **impurezas** (ex.:lama, poeira, umidade, água...)



Lubrificação:

Formação do filme de óleo

Lubrificação desfavorável


Lubrificação incerta

Graxa ou óleo ...?

Existem dois tipos de lubricante utilizados no rolamento : a graxa e o óleo Utilização:

Observação: todos os rolamentos impermeáveis protegidos são prélubrificados com a graxa e lubrificados à vie

Por que 80 % para a graxa?:

- -lubrificação fácil a executar (facilidade de estocagem e de utilização)
- simplicidade dos mancais
- -custos menos elevados

Quando o óleo é utilizado por razões técnicas (velocidade e temperatura), é, na maior parte dos casos, impossível de passar para a graxa.

Graxa ou óleo?

GRAXA

ÓLEO

VANTAGENS

- **≻**limpeza do mecanismo
- >estanqueidade fácil a realizar
- > barreira de proteção
- > simplicidade de execução
- > fácil de manipular
- > possibilidae de lubrificação definitiva

- boa circulação no rolamento
- evacuação das calorias
- ► facilidade de controle do lubrificante (estado e nível)
- velocidade elevada

(+20% em relação com uma lubrificação com graxa)

par de rotação fraco

INCONVENIENTES

- > coeficiente de atrito mais elevado
- > evacuação térmica mais fraca
- > impossível verificar o nível de lubrificação

(par conséquent, esta exige uma retenção fiável ou um apport periódico)

- > perfeita estanqueidade necessária para a montagem
- > se a parada for prolongada, má proteção contra a oxidação e a umidade
- > risco de lubrificação insuficiente na inicialização

Lubrificação:

Constituição de uma graxa

Segundo as combinações, as propriedades da graxa mudam

Como selecionar uma graxa?

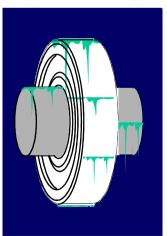
Critérios utilizados na seleção de uma graxa:

- ▶tamanho do rolamento e velocidade de rotação (= fator NDm)
- >temperatura de funcionamento
- ➤ tipo de rolamento (um rolamento de esferas émais fácil de lubrificar que um rolamento de rolos)
- ➤ condições de funcionamento do rolamento (ambiente)
- **≻**carga

Propriedades de uma graxa:

- ➤ viscosidade do óleo de base (permite medir a fluidité da graxa)
- **≻**consistência
- ≻nível de temperatura
- >miscibilidade (compatibilidade das graxas)
- **>** aditivos




Como selecionar uma graxa?

Nível de Temperatura

A temperatura do ambiente do rolamento é déterminante na escolha da graxa (as temperaturas variam de - 60° à + 250°C)

Se a temperatura é **elevada demais** a graxa torna-se muito fluida (o óleo goteja demais) e o filme de óleo se brise Se a temperatura é **baixa demais**, a graxa s'épaissit, os corpos rolantes deslizam ao invés de girar, e se bloqueiam

Uma graxa inadequada à temperatura provoca uma deterioração prematura do rolamento

Como selecionar uma graxa? <u>Consistência e miscibilidade</u>

consistência

A consistência caracteriza o brau de firmeza da graxa

Essencialmente, depende do tipo e da qualidade de l'épaississant A escala de medição da consistência é a grade **NLGI** (National Lubrication Grease Institute) A maior parte das graxas são de **consistência 2**.(Falamos de **GRAU 2**)

miscibilidade

Entendemos por miscibilidade, a compatibilidade das graxas entre elas.

Regra a seguir: não misturar as graxas que contêm sabões e óleos diferentes.

(O risco é de haver uma graxa (mistura de duas) deteriorada (uma "maionese"), o que pode provocar a ruptura do filme de óleo de base, e a deterioração prematura do rolamento).

Conhecimento SNR em matéria de graxas

A **importância das graxas** para um bom funcionamento do rolamento, exige que o fabricante de rolamentos (SNR) seja um **especialista** da graxa:

- -mais de 600 graxas na sua gama
- -mais de 100 graxas selecionadas e testadas
- -inúmeros tipos de máquinas de teste e aparelhos de qualificação fisico-química

gama de graxas padrão SNR

MS	multiserviço
EP	extrêma pressão
HT	alta temperatura
THT	temperatura muito alta
GV	galtas velocidade / baixa pressão
VX	extrema pressão / velocidade baixa

Embalagens (segundo as graxas) que vão de 50g à 180kg

Regras para uma lubrificação inicial

Lubrificação: quantidade, colocação

1. Selecionar a graxa adequada:

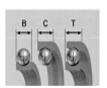
cada aplicação

um tipo de graxa

2. Colocar a quantidade adequada

Lubrif. excessiva aquecimento gripagem.

Lubrif. insuficiente — **morte prematura** do rolamento.


A graxa deve ocupar de 20 a 30 % do volume livre ao interior do rolamento.

Fórmula para a primeira lubrificação: G = 0,005 D.B

Em gramas ou em cm³ de graxa

largura do rolamento

3. Lubrificar com metodologia

O método de lubrificação depende do tipo de rolamento. Coloque a graxa entre os corpos rolantes

e os anéis. Girar o rolamento com a mão antes de montá-lo a fim de que a graxa se espalhe por tudo

Observação geral:

Antes de seguir estes três pontos, é necessário se assegurar da **limpeza** do lubrificante e do rolamento; a presença de corpos estranhos pode ocasionar uma deterioração prematura do rolamento

pistola de lubrificação (que permite uma lubrificação precisa, prática e limpa)

Lubrificação: quantidade, freqüência

Relubrificação: frequência e quantidade de graxa à adicionar

A relubrificação inclui todos os rolamentos abertos

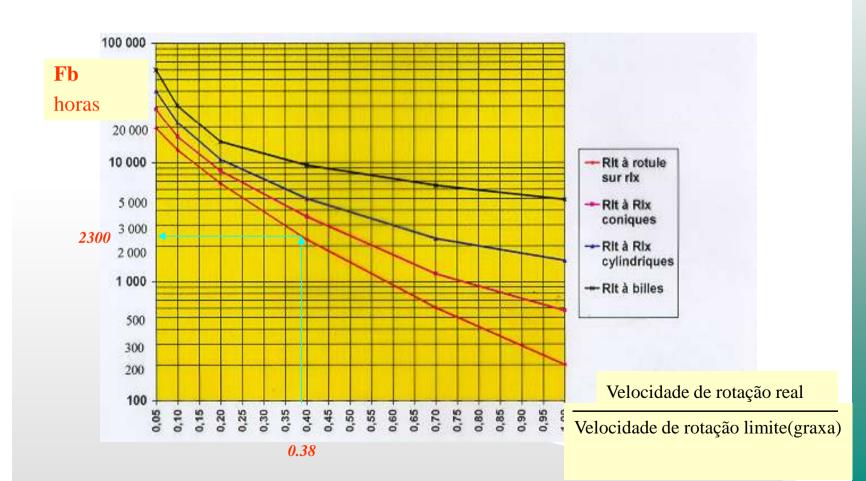
A frequência de relubrificação depende:

- do **tipo** de rolamento,
- da relação: **velocidade de utilização do rolamento/velocidade limite** (dada no catálogo),
- do ambiente, da aplicação e da temperatura

A quantidade de graxa a adicionar depende:

- da **largura** do rolamento,
- de seu diâmetro externo,
- do coeficiente c, definido na página 42 do catálogo (segundo a freqüência).

OBSERVAÇÃO: os métodos para definir tanto a freqüência quanto a quantidade oferecem resultados aproximados, a serem ajustados para cada aplicação em função de sua experiência



Lubrificação: freqüência

Determinação da Freqüência base de relubrificação Fb (em horas) en função do tipo de rolamento e da velocidade de rotação.

a) Freqüência de relubrificação

Lubrificação: frequência

OBSERVAÇÃO: os métodos para definir tanto a freqüência quanto a quantidade oferecem **resultados aproximados**, a serem ajustados para cada aplicação em função da experiência

b) Correções da freqüência de relubrificação

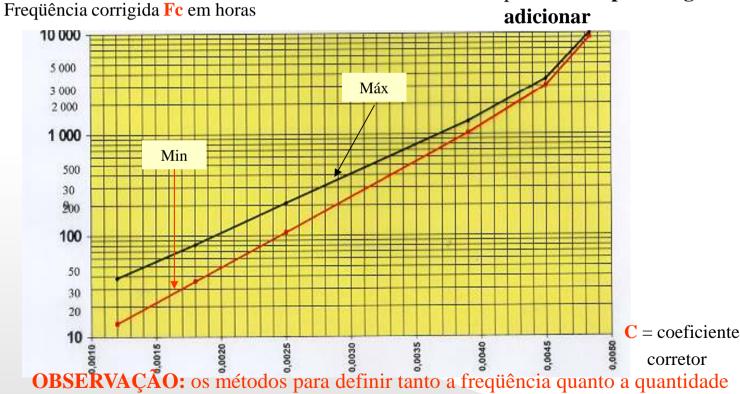
Afrequência de base (Fb) deve ser corrigida com os coeficientes abaixo, em função das condições do meio no qual funciona o rolamento.

Frequência corrigida $Fc = Fb \times Te \times Ta \times Tt$

Condições	Meio	Aplicação	Temperatura				
	Poeira	Com choques		Tipo de graxa			
	Umidade Condensação	vibrações Eixo vertical	Nível	Graxa padrão	Graxa alta temperatura		
Coeficientes	Te	Ta		Tt	Tt		
Meio	0,7 à 0,9	0,7 à 0,9	75°	0,7 à 0,9			
Forte	0,4 à 0,7	0,4 à 0,7	75° à 85°	0,4 à 0,7	0,7 à 0,9		
Muito forte	0,1 à 0,4	0,1 à 0,4	85° à 120°	0,1 à 0,4	0,4 à 0,7		
			120°à 170°		0,1 à 0,4		

Lubrificação: quantidade

Determinação do coeficiente c em função da Fc em horas, a aplicar graças à fórmula:


$P = D \times B \times c$

c) Quantidade de graxa a adicionar

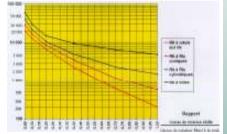
D: diâmetro externo do rolamento.

B: largura do rolamento.

para obter o peso de graxa a adicionar

oferecem resultados aproximados, a serem ajustados para cada aplicação em função da experiência

Lubrificação: frequência, quantidade


1\ T

OBSERVAÇÃO: os métodos para definir tanto a freqüência quanto a quantidade oferecem resultados aproximados, a serem ajustados para cada aplicação em função da experiência

d) Exemplo:

22212 EAB33, engraxado com uma graxa padrão, que gira à 1500 rpm, em meio pulverulento e à 90°C, sem choques nem vibrações fortes.

22212 EAB33 : Velocidade limite = 3900 rpm.

$$\frac{\text{Velocidade utilização}}{\text{Velocidade}} = \frac{1500}{3900} = \textbf{0,38} \implies \text{Freqüência de base= 2300 horas}$$
Limite

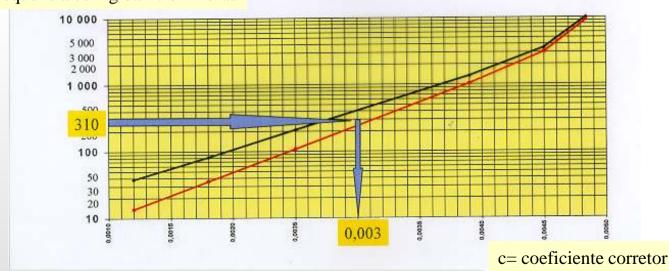
Sem choques violentos
$$Ta = 0.9$$

Freqüência corrigida = $2300 \times 0.5 \times 0.9 \times 0.3 = 310$ horas

Lubrificação: frequência, quantidade para cada aplicação em função da

OBSERVAÇÃO: os métodos para definir tanto a freqüência quanto a quantidade oferecem **resultados aproximados**, a serem ajustados para cada aplicação em função da experiência

d) Exemplo. (Cont.):


22212 : Fc = 310 horas, onde c = 0.003.

Diâmetro D=110mm; largura B=28mm.

Peso de graxa $P = 110 \times 28 \times 0,003 = 9 \text{ gramas}$

Adicionaremos 9 gramas de graxa a cada 310 horas

Freqüência corrigida Fc em horas

Ferramentas de lubrificação

Lubrificação: Pistola de lubrificação

$\acute{\mathbf{E}}$ uma ferramenta de lubrificação...

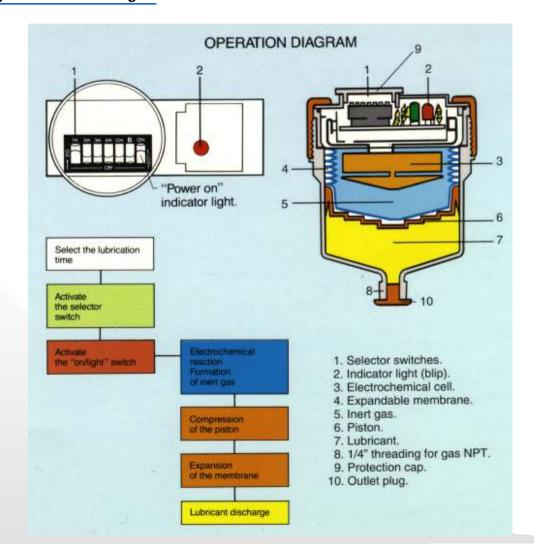
- **precisa**, graças a um nivelamento especialemente criado pela SNR e uma embouchure que permite introduzir a graxa no local preciso (entre os corpos rolantes e os anéis)
- **prática e limpa**, permite lubrificar com uma só mão
 - emprega uma cartucho fechado SEM RISCO de poluição externa
- **compatível e polivalente:** a pistola é compatível com os cartuchos de graxa padrão (500 cm³)

Lubrificação: Lubrificador automático

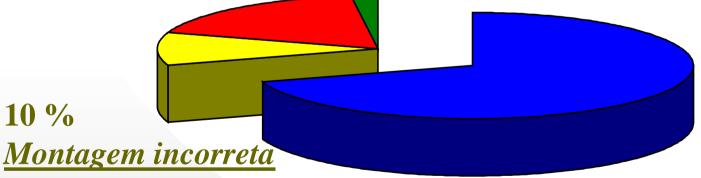
- ▶limita as intervenções nos **locais de riscos** ou de **difíceis acessos**
- >reduz os custos da função lubrificação
- >permite um débito regular
- **≻**é **inofensivo** para o meio ambiente (gás não explosivo e não inflamável)

homologações CERCHAR e INERIS (material elétrico utilizável em atmosfera explosiva)

- >aparelho programável
- > podemos parar seu funcionamento e reprogramá-lo
- Perfeitamente impermeável (podemos imergi-lo) e utilizá-lo em não importa qual posição
- **diversas graxas** disponíveis (EP, HT, VX e AL1)



Lubrificação: Lubrificador automático


Principais causas de destruição dos rolamentos

18 % Poluição

- entrada de líquido em serviço
- de abrasivo em serviço
- de partículas na montagem

2 % Diversos

- defeitos de regulagem
- defeito do rolamento
- passagem de corrente elétrica

- montagem brutal
- aquecimento excessivo
- ajuste e jogos

10 %

- aperto dos mancais
- defeitos geométricos

70 % Lubrificação

- escolha do lubrificante
- quantidade (demais ou muito pouco)
- freqüência
- colocação

Lubrificação: Gripagem

Rol. de esferas

Rol. esférico

Rol. cônico

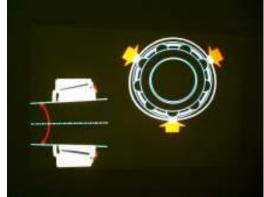
Rol. cônico

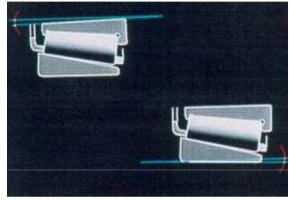
Montagem: Brutal

Quebras devidas a uma montagem brutal

Arrancamneto de matéria na pista por realinhamento forçado

Ruptura de uma junta devida a uma montagem brutal


Marcações na borda da pista pela montagem no eixo com apoio no anel externo



Montagem: defeitos geométricos

Defeito geométrico do eixo e do alojamento em rol. de esferas

Defeito geométrico do eixo e do alojamento em rol. cônico

Deterioração do cone devida a um defeito de alinhamento

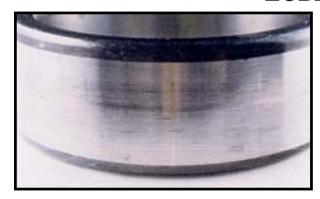
Poluição:

Oxidação na parada (entrada de líquido)

Oxidação em funcionamento (entrada de líquido)

Oxidação e desgaste em funcionamento (entrada de líquido e relubrificação

Desgaste por entrada de abrasivo



Entrada de partículas duras (metal,plástico...)

LUBRIFICANTE INSUFICIENTE

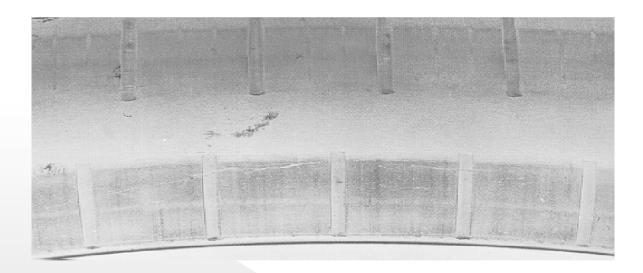
Riscos no centro das pistas

Gaiola desgastada

FALSO EFEITO BRINELL

Rol. de esferas

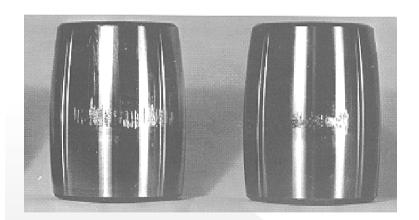
Rol. de rolos



Deteriorações provocadas por defeito de isolamento

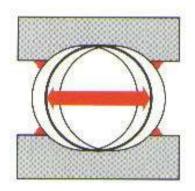
Deteriorações devidas a um mal isolamento no solo da máquina durante as paradas prolongadas e na presença de vibrações.

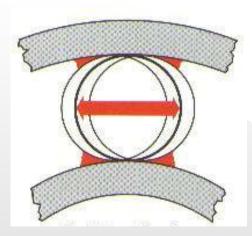
Aparição de marcações deixadas pelos corpos rolantes


Esta deterioração é conhecida sob o nome d e falso brinel

Observações no transporte de rolamentos

Podem aparecer deteriorações locais nas pistas ou nos corpos rolantes provoados por um transporte inadequado ou provocadas pela presença de vibrações transmitidas ao rolamento. As deteriorações aparecem geralmente sob formas de marcações com bordas mais ou menos definidas.


Anel externo do mesmo rolamento. Constataos as mesmas marcas provocadas pelas vibrações Os rolos deste rolamento foram danificados durante o transporte. A origem da deterioração é devida às vibrações. Nenhuma proteção estava prevista para o rolamento.

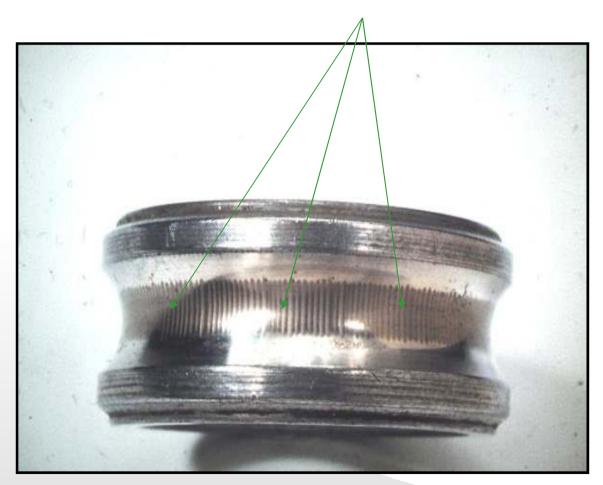


Observações no transporte de rolamentos

Vibrações axiais

Oscilações

Solução para evitar estes problemas



Diversos:

Passagem de corrente elétrica sobre um anel interno

Diversos:

Arco elétrico sobre um anel interno

Aplicações Indústria

Serviço análises dos rolamentos

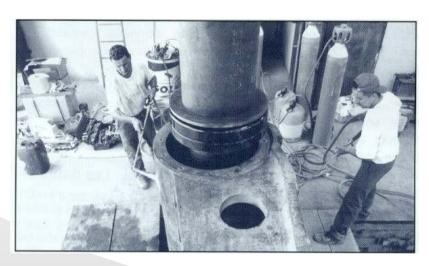
Determinação das causas de destruição

Minimização do custo de manutenção

DEMANDE EXPERTISE ROULEMENT

<u>CLIENT:</u>	<u>Date:</u>	
Adresse:		
Personne à contacter: <u>Tél:</u>		
Symbole du roulement:	Quantité de roulements:	
Motif du retour:		
1. Machine:		
2. Organe:		
3. Durée de fonctionnement:		
4. Vitesse:		
5. Lubrifiant utilisé: Huik	Graisse () Réf.:	
6. Ajustements: Arbre:	Logement:	
7. Ambiance (dans laquelle fonctionne le roulement):		
8. Température d'utilisation:		
9. Autres renseignements:		
10. Paramètres électriques:		
Alimentation : Résistance de charge:	Courant d'alimentation Courant sur le collecteur (sort	: ie):

- Les roulements expertisés restent à la disposition du client pendant 3 mois.
- Cette fiche doit parvenir immédiatement avec le ou les roulements à expertiser à l'adresse suivante :
 A l'attention de Mr. MOENNE-LOCCOZ Eric- Service APPLICATIONS TECHNIQUES SNR ROULEMENTS- 1,Rue des Usines – 74010 ANNECY CEDEX



Assistência técnica na montagem

Assistência realizada às pedreiras de Thivier em Dordogne (França)

Montagem de quatro rolamentos esféricos em um triturador primário

